

The equipment EN 01.4 has been designed as a stand alone photovoltaic solar power plant, with 2 modules and all the elements necessary to complete the installation.

The equipment consists of: 2 photovoltaic panels of 20Wp, 2 batteries, a voltage regulator, an inverter, a pyranometer, different loads in DC and AC, and modules of control and data acquisition.

This working station is equipped with tension and current meters in the key sections, to make it easy for the student to understand its operation.

The system works in exactly the same way as the photovoltaic stand alone facilities of electrical generation, that are normally used on boats, caravans, pumping groups, or remote locations where access to the public mains does not exist.

In addition, this equipment allows for the connection of the panels and the batteries, in series or in parallel.

The wiring system through 4mm safety terminals allows a fast and secure connection for the students

EN 01.4 - DEMOSTRADOR ENERGIA FOTOVOLTAICA AISLADA

4.1.2.2. METODO

Con el equipo ya conectado, utilizamos los cables suministrados para conectar un

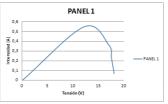
orque en caso de hacerlo al revés, el regulador nos dará erro

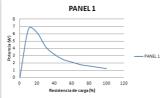
DIKOIN

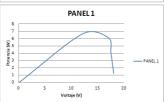
EN 01.4 - DEMOSTRADOR ENERGIA FOTOVOLTAICA AISLADA

- Encendemos el interruptor de la lámpara de 6 W comprobando cómo se ilumina. Hacemos lo mismo con la de 20 W, observando que en esta ocasión se ilumina completamente gracias a la batería.

 Con las lámparas conectadas, apagamos uno de los focos de iluminación observando
- cómo en esta ocasión la disminución de la intensidad de radiación no afecta a la
- potencia de iluminación de las lámparas por estar conectada la batería. El amperímetro de la batería nos permite conocer el sentido del flujo de corriente, es decir cuando la intensidad que marca es positiva, significa que la batería está aportando carga al regulador, y cuando es negativa es el panel el que está cargando la batería.
- Pulsando el botón izquierdo rojo del regulador, podemos conocer el estado de las siguientes variables:




The user manual shows clearly and with a large number of images, the entire process to be followed to operate the equipment.



DIKOIN

EN 01.4 - DEMOSTRADOR ENERGIA FOTOVOLTAICA AISLADA

DIKOIN

EN 01.4 - DEMOSTRADOR ENERGIA FOTOVOLTAICA AISLADA

PANEL Nº 2

Tensión de circuito abierto:
Intensidad de cortocircuito: 17,71 V 0,64 A · Factor de forma: 0,714

LECTURA Nº	RESISTENCIA EN PORCENTAJE (%)	TENSION (V)	INTENSIDAD (A)	POTENCIA P = V·I (W)
1	0	0	0	0
2	10	13,27	0,61	8,0947
3	20	16,75	0,36	6,03
4	30	17,14	0,23	3,9422
5	40	17,29	0,17	2,9393
6	50	17,38	0,14	2,4332
7	60	17,43	0,11	1,9173
8	70	17,47	0,1	1,747
9	80	17,5	0,08	1,4
10	90	17,51	0,07	1,2257
11	100	17,52	0,07	1,2264

EN 01.4 - DEMOSTRADOR ENERGIA FOTOVOLTAICA AISLADA

4.1.4. RENDIMIENTOS DE LA INSTALACION

el proceso se producen pérdidas, por lo que al final siempre tenemos menos energía que la de partida. A la relación entre la energía final obtenida entre la de partida o inicial le llamamos rendimiento. En nuestro caso vamos a obtener los siguientes rendimientos:

• Rendimiento paneles solares que es la potencia de salida (V-I) entre la potencia de la intensidad de radiación suministrada (Intensidad de radiación por superficie)

$$\eta = \frac{I \cdot \mathbf{a} \cdot \mathbf{L}}{V \cdot I} \left\{ \begin{array}{l} I = Intsnsidad \quad solar \\ a = Ancho \quad panel(m) \\ L = Longitud \quad panel(m) \end{array} \right.$$

Rendimiento del regulador de carga que es la relación entre la potencia de salida del regulador y la potencia suministrada por las baterías y los paneles.

$$\eta = \frac{(V \cdot I) \text{ salida}}{(V \cdot I) \text{ entrada}}$$

Rendimiento del inversor que es la relación entre la potencia de salida y la potencia de entrada.

$$\eta = \frac{Potencia salida}{\sigma r}$$

DIKOIN

EN 01.4 - DEMOSTRADOR ENERGIA FOTOVOLTAICA AISLADA

- Con todos los elementos tal y como los teníamos conectados, es decir, el panel solar y la batería al regulador de carga, la salida del regulador de carga al inversor, y la salida del inversor al panel de consumo de corriente alterna, vamos leyendo y
- anotando los valores de la potencia a lo largo de la instalación.

 Con la lectura del piranómetro, es decir la intensidad de radiación solar y las dimensiones de los paneles solares que son de 662x299 mm obtenemos la potencia
- Con la lectura del voltímetro y del amperímetro del panel que tenemos conectado, obtenemos la potencia que está suministrando el panel. La relación entre ambas es el rendimiento del panel.

 La potencia de entrada al regulador de carga, es la suma de la potencia aportada por
- el panel más la de la batería. La potencia de salida, nos la indica el propio regulador
- le paire massa du et auteria. Le potenta ue sanua, nisa a inicia de inpoi regulador. La relación entre ambas es el rendimiento de regulador de carga. La potencia de salida del inversor la tenemos en el indicador que está en su panel, la relación entre ésta y la potencia suministrada por el regulador, nos da el rendimiento del inversor

The practice manual shows and and explains all the theoretical foundations, as well as the mathematical formulas used for the realization of all the experimentation.

LEARNING OBJECTIVES

- Study of the operation of a photovoltaic solar installation.
 - Isolated panels.
 - Modules connected to batteries.
 - Operation with different types of loads in DC.
 - Conversion of DC to AC.
 - Operation with different types of loads in AC.
 - Efficiency of the installation.
- Determination of the characteristics of the solar modules.
 - Current Voltage Curve.
 - Current in short circuit.
 - Voltage of open circuit.
 - Curve Power Voltage.
 - Curve Power Resistance of load.
 - Maximum power generated.
 - Form factor.
 - Efficiency.
- Influence of the tilt angle and the intensity of solar radiation in the generated energy.
- Determination of the characteristics of the modules connected in series.
- Determination of the characteristics of the modules connected in parallel.
- Study of the behavior of the solar modules in diverse conditions of operation.
 - Isolated panels.
 - In parallel with different loads.
 - In series with different loads.
 - Connected panels to batteries in series.
 - In parallel with different loads.
 - In series with different loads.
 - Connected panels to batteries in parallel.
 - In parallel with different loads.
 - · In series with different loads.

TECHNICAL DATA

CHARACTERISTICS:

- Photovoltaic modules: 2 photovoltaic modules of 20Wp.
- Pyranometer for the measurement of the solar intensity.
- Charge controller: Charge controller with operation at 12 or 24V CC, and max. current=10A. Max. input voltage= 45V.
- Batteries: 2 Batteries 12V 10Ah.
- Inverter: 200 VA stand alone inverter, with single-phase output.
- Analog and digital voltmeters of 4 digit with 12 bits + sign resolution.
- Analog ammeters with digital positive and negative measuring (zero centered) and 4 digit digitals with 12 bits + sign resolution.
- Direct currrent halogen lamps.
- Direct current LED white lamps.
- Alternating current low consumption lamps.
- Rheostat for analysis of the voltage-current graph in the solar modules and comparison with the specifications. It allows parallel or series connection.
- The equipment is provided with a complete step by step guide.

DIMENSIONS:

- Photovoltaic panels structure: 895x650x1740 mm.
- Panel modules structure: 500x1300x790 mm.

REQUIREMENTS

• Input: 230V/50Hz.